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Size-dependent degree distribution of a scale-free growing network

S. N. DorogovtseV;?* J. F. F. Mende$;” and A. N. Samukhifh*
Departamento de Bica and Centro de Bica do Porto, Faculdade de Gieias, Universidade do Porto, Rua do Campo Alegre 687,
4169-007 Porto, Portugal
°A.F. loffe Physico-Technical Institute, 194021 St. Petersburg, Russia
(Received 29 January 2001; published 21 May 2001

We propose the simplest model of scale-free growing networks and obtain the exact form of its degree
distribution for any size of the networklegree is a number of connections of a Notlée demonstrate that a
trace of initial conditions — a hump near cutoff of the degree distributidq at-t# — may be found for any
network size. Her@=1/(y— 1), wherey is the exponent of the degree distribution of the network. These size
effects implement a natural boundary for the observation of the scale-free networks.
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Significant progress was made recently in the field ofP(k,t) to the stationary distribution turns to be nontrivial.
evolving networkgd1-7]. It was observed that a number of Using a simple exactly solvable model, we demonstrate be-
growing networks in naturéNorld Wide Web, Internet, col- low that, for finite networks, the power-law region of degree
laboration nets, some networks in biology, etate scale-  distribution has the cutoff at.,~t?, where 3=1/(y—1).
free i.e., their degree distribution is of a power-law form We show that the trace of the initial conditions, i.e., of the
(degree is a number of connections of a nf8le. Moreover, initial configuration of the network—the hump &t~k
it was found that at least many of the natural networks must-t*—may be observed aany size of the network. This
have degree distributions with long tails, otherwise growingcutoff in degree distribution allows observation of the
networks are not resilient enough to random breakdowngower-law dependence only for very large networks. For
[9-11]. Infinite networks with the degree distribution expo- large values ofy, the power-law dependence is practically
nenty=<3 do not decay foany concentratior{less than one  unobservable.
of randomly removed nodes or link4Q]. Let us introduce the model of the scale-free growing net-

The proposed mechanism of self-organization of networksvork with undirectedlinks (see Fig. L Initially (t=2),
into scale-free structures, the preferential linking, is quitethere are three nodes=0,1,2, each with degree 2.
natural[12]. New links of the growing networks are prefer- (i) At each increment of time, a new node is added.
entially attached to nodes that already have many connec- (ii) It is connected to both ends of a randomly chosen link
tions (degreek). In fact, it is the realization of a general by two undirected links.
principle —popularity is attractive Phenomena of such kind As far as we know, it is the simplest model of a scale-free
were first considered by Simon long a§b3,14. Several network. The preferential linking arises in it not because of
types of preferential linking were proposgt?,15-19 that  some special rule including a function of degree a$lip|
provide a variety of they exponent values between 2 and but naturally. Indeed, in the model that we consider, the
infinity. probability that a node has the randomly chosen link attached

One should emphasize that only a few scale-free networkw it is equal to the degreleof the node divided by the total
are known yet. The range of the values of degree, in which
the power-law behavior can be observed, is usually too nar- 3
row for a precise measurement of the exporngntWhy are a) b)
so few scale-free networks observed? Why are the values of
v for all of them only between 2 and 3Rote that not any
network has to be resilient, e.g., neither nodes nor links of 0, ! 0
collaboration networks are removable by definitif2i].) - -

Here, we discuss these questions. 5
In previous papers, degree distributioRgk,t) of scale- A
1

2 2

free networks were calculated only in the “thermodynamic 3 2 3
limit,” i.e., in the limit of the large system sizg which also

plays the role of time, if one node is added at each increment c)
of time. In this case, the distribution is stationary, and is of
the formP(k)~k™” in all ranges of large enougk k>1.

Nevertheless, real networks are finite. The evolution of t=4

d)

o,
—
D,

t=5

FIG. 1. lllustration of the simplest model of scale-free growing
networks. In the initial configuratioh=2 three sites are present,

*Email address: sdorogov@fc.up.pt s=0,1,2 @). At each increment of time, a new node with two links
"Email address: jfmendes@fc.up.pt is added. These links are attached to the ends of a randomly chosen
*Email address: alnis@samaln.ioffe.rssi.ru link of the network.
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number of links, 2— 1. Therefore, the evolution of the net-
work is described by the following master equation,

21 ™

t
Wp(k,s,t),
(1)

with the initial condition,p(k,s={0,1,2},t=2)= 6, ,. Also,
p(k,t,t)= 8y . Here,p(k,s,t) is the probability that the site
O0=s=<t hask connections at time&. Note that this master
equation and all the following ones are exact fortaf2.
Equation(1) has the form similar to that of the Baraba

p(k,s,t+1)= k—1s1t)+
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>1 andk./s/t fixed is obtained using th2 transform. The

scaling relation is of the form,
Vilod -l

This is a particular case of the corresponding scaling rela-
tions for the scale-free network&7].

The matter of interest is the total degree distribution,
P(k,t)==L_,p(k,s,t)/(t+1). The equation for it can be de-
rived from Eq.(1),

p(k,s,t)= ( )

Albert model[12]. Therefore, one may expect that the scal- -1
ing exponents of these models have to coincide. One should P(k,t)= T 1121-3 55— P(k=1t-1)
emphasize that, here, unlike the Simon’s model, a number of t+ t=
nodes(ong added at each time step is fixed. K
From Eq.(1), we can obtain several useful exact relations 1- m) P(k,t—1)|+ 71 —6.> (8
for our model. In particular, from Eq1), one may find the
equat|on for the average degree of an individual nodeyh the initial conditionP(k,2)= 8.
k(s,t) =223 %kp(k,s1): The exact solution of Eq8) is
— 2t — — —k—2)1
Kst+1)=5— ks, kty=2. @  prpe 2 1 (2t—k=2)!
' k(k+1)(k+2) (t+1)(2t=3)!" 2t=kt—k)!
One can obtain easily its solution, (k—2)(k+1)
X { (t=k)|t+ —
) o gt s (t—1)! (23—3)!!&512& .
(s0)= i 2i—3yn = 2Ns © , (= Dk(k+1)(k+2) .
2 . ©

Here,s=2 andk(0t)=k(1t)=k(2t). Hence, the scaling
exponents, defined through the reIationf(s,t)oc(s/t)*ﬁ,
equals 1/2 like for the BarabaAlbert model.

Also, one can find the average numli_lils,s’) of links
between the sites and s’ for any s<s’<t, 0<b(s,s’)

<1.1In fact,H(s,s’) is the average of the element of the
adjacency matri{8] over all possible realizations of the
growth. The equation for this quantity is

s—1 s’
b(s,s’ =51 Z b(u,s)+ > b(s,u)|. (@)
u=s+1
Its exact solution fois<s’ is of the form,
_ ,_(s'=2)! (2s=3)l1ss'>1 1
b(s,s')=2% "% = )

(s=1)! (25’31

and b(0s')=b(1s")=b(2s')=1. Expression(5) demon-
strates distribution of links in the network.

One may check Eq9) inserting it directly into Eq(8). We
obtained Eq.(9) using the distribution functionP(k,t)
=3L .p(k,s,t)/(t—2), which looks less cumbersome than
P(k,t) and may be found without great problems, and the
expression fop(k,2t), Eq. (6).

From Eq.(8) with t—o, it follows the equation for the
stationary distributiorP(k),

(k—1)P(k—1)—

where the solution is

(k+2)P(k)+26,,=0, (10

12

P(k)= k(k+1)(k+2)" (1)
Equation(11) is similar to the form of the stationary degree
distribution found for the Barals&Albert model[17,18.
One sees thay=3.

Our aim is to find how the stationary distribution is
reached. From Eq9), for t>k>1, one gets

We found exactly the degree distribution of the oldest

nodes,p(k,0t)=p(k,1t)=p(k,2}),

(k—=1)
20Kt —k)!

(2t—k—2)1"K(k—1)
(2t—3)11 2t

p(k,2t)= (6)

P(k,t)=

k2 1(k?\? 1 k?
T ex —ZT . (12)

The factorP(k,t)/P(k)=g(k/\t) depends only on the com-
binationk/\t. Therefore, the peculiarities of the distribution

This relation turns to be useful for finding the total degreeinduced by the size effects never disappear but only move

distribution. Also, one may obtain the relatiop(2,s,t)
=(2s—3)/(2t—3). The scaling form of(k,s,t) for k,s,t

with increasing time in the direction of large degree. The
functiong(k/t) is close to 1 fok< \t, has a hump a4
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the networks reported as having power-law degree distributions.
FIG. 2. Deviation of the degree distribution of the finite-size 1€ line logct~2.5(y—1) is the finite-size boundary for the ob-
network from the stationary on@(k,t)/P(k,t—), vs k/t. The servation of the power-law degree distributions. The dashed line

form of the hump depends on the initial configuration. v=3 is the resilience boundary. This boundary is important for
those growing networks that have to be stable to random break-

. : _ downs. The points: 4 and 1b are obtained for incoming and out-
ween nd 4yt with maximum atk = o .
ie; 4643 vt a(g \//f\/f)i7 2,3,211 5u62 at ”:‘r;(é\{i&f going links of the pages of the World Wide Wéh,7] (also, i,
o .tk ’ ~4,13f max F ¥ t.h T I behavi =2.1 andy,,;= 2.45 were obtained from the complete map of the
Omt at Keyt (see Fig. 2 Hence, the power-law behavior nd.edu domain of the web, 325,729 nod&g], y;,=1.94 was ob-

is observable only in a rather narrow regions k<<t tained for the domain level of the web in spring 19%2)), 2a is

One may check that the form of the hump in Fig. 2 de-for outgoing links for the inter-domain structure of the Internet and
pends on the initial conditions. In our case, the evolutiomnp is for outgoing links for the Internet at the router leyal, 3a
starts from the configuration shown in Figal If we start  and 3 are for citations of the ISI data base and Phys. Rey1D
the growth from another configuration, the form would be (also, estimations of Ref18] lead toy=2.5 or, alternatively, even
different. to some possibility that these networks are not scalesfreés for

We have demonstrated above the size-dependence of dide collaboration network of MEDLINE21], 5 is for the collabo-
gree distribution using the exactly solvable example. Whatation network of movie actori0], (also, y=2.3 was obtained for
are the general reasons of such behavior of scale-free neis network in[6]) 6 is for incoming and outgoing links of the
works? networks of the metabolic reactiof3]. The precision of the upper

Measuring of degree distributions is always impeded bypoirllts is about=0.1 and is much worse for points in the dashed
the strong fluctuations at larde The reason for such fluc- €g'on.

tuations is the poor statistics in this region. One can easilfjs, near the cutoff depends strongly on this factor. The
estimate the characteristic vallig above which the fluctua- power-law dependence of the distribution can be observed
tions are strong. IfP(k)~k™?, and y>2, thentk; "~1.  only if it exists for at least 2 or 3 decades of the degree. For
Therefore k;~t*”. One may improve the situation using the this, the networks have to be large; 16750~ 1), But there
cumulative distributions,P.,(k)=fdkP(k), instead of are only a few large networks in nature! For largeone
P(k). Also, in simulations, one may make a lot of runs to practically has no chances to find the scale-free behavior.
increase the statistics. Nevertheless, one cannot pass the cut-In Fig. 3, in the log-linear scale, we present the sizes of all
off k., that we discuss. One can estimate the cutoffreported scale-free networks vs thegiexponent values. The
tPeyum(Keud) ~ 1, SOKeu~tY~1). This cutoff is the real bar- plotted points are inside of the region re;tricted by thg lines:
rier for the observation of the power-law dependence. y=2, logot~2.5(y—1), and by the logarithm of the size of
We have shown that the degree distribution of individualthe largest scale-free network in nature—the World Wide

sites is an exponentially decreasing function at la&kdeee ~Web—logot~9. o
Eq. (7)]. For the scale-free networks, it can be written in the Our model demonstrates that the form of degree distribu-

; _ B 8 tion is influenced by initial conditions even for large net-
\g/;v(;r::(raafl(xicgllr;g scfglri:]g[%‘z]r’] cttiJ)(nk'?;{;)d t(hsét)r e{a[\gg[snléts)l% works. Therefore, it is hard to obtain the values of the scaling

between the exponents and y is B(y—1)=1. In the par- exponents with high precision both from experimental data

ol fth d A6l — h and simulations. One should note that including the aging of
ticular case of the proposed modé(x)=xexp(-x). The nodes, breaking of links, or disappearing of nodes suppresses

exponents also figures in the relation for the average de-ihe effect of the initial conditions and removes the huisge
gree, k(s,t)e(s/t) " ~. It follows from the scaling form of the plots of the degree distributions [ih6]).

p(k,s,t) that the cutoff of the total distribution is determined  In conclusion, using a simple model, we have described
by the degree distribution of the individual nodes with thethe size effect on degree distribution of scale-free growing
smallest numbers, i.e., by the oldest ones. Therefore, networks. This cutoff and a trace of the initial conditions, a
Keut(1/t) B~ const andk,,~t#=tY(*"1) For the considered hump near the cutoff, impede observations of the power-law
model, B=1/2, see Eq(7). The degree distributions of the dependence even for large but finite networks. For large
oldest nodegand their quantitydepend strongly on the ini- such observations are impossible -2, thenk.,~t, so,

tial conditions. Hence, the part of the total degree distribu-in fact, the cutoff is absent.
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The proposed model belongs to the class of the exactly Note added—After this paper had been submitted, a work
solvable scale-free growing networks. One can consider ari24] with analytical expressions for size-dependent distribu-
other simple model. Instead of the connection of a new nodgons of the Simon model was presented. Numerical calcula-
with the ends of a randomly chosen link of the network, onelion of these distributions was made in REZ5].

may connect it each time with all three vertex nodes of a S N.D. thanks PRAXIS XXI(Portugal for a research
randomly chosen triangle of linkgNote that we forbid mul- ~ Grant PRAXIS No. XXI/BCC/16418/98. J.F.F.M. was par-
tiple links) In other words, a new node connects with threetially supported by Project No. POCTI/FIS/33141/99. We
random nearest neighbor nodes. Such a model has the samigo thank A.-L. Barals for providing us with the preprint

scaling exponents as the considered one. [23] before publication.
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