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Size-dependent degree distribution of a scale-free growing network
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We propose the simplest model of scale-free growing networks and obtain the exact form of its degree
distribution for any size of the network~degree is a number of connections of a node!. We demonstrate that a
trace of initial conditions — a hump near cutoff of the degree distribution atkcut;tb — may be found for any
network size. Hereb51/(g21), whereg is the exponent of the degree distribution of the network. These size
effects implement a natural boundary for the observation of the scale-free networks.
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Significant progress was made recently in the field
evolving networks@1–7#. It was observed that a number o
growing networks in nature~World Wide Web, Internet, col-
laboration nets, some networks in biology, etc.! are scale-
free, i.e., their degree distribution is of a power-law for
~degree is a number of connections of a node@8#!. Moreover,
it was found that at least many of the natural networks m
have degree distributions with long tails, otherwise grow
networks are not resilient enough to random breakdow
@9–11#. Infinite networks with the degree distribution exp
nentg<3 do not decay foranyconcentration~less than one!
of randomly removed nodes or links@10#.

The proposed mechanism of self-organization of netwo
into scale-free structures, the preferential linking, is qu
natural@12#. New links of the growing networks are prefe
entially attached to nodes that already have many con
tions ~degreek). In fact, it is the realization of a genera
principle —popularity is attractive. Phenomena of such kin
were first considered by Simon long ago@13,14#. Several
types of preferential linking were proposed@12,15–19# that
provide a variety of theg exponent values between 2 an
infinity.

One should emphasize that only a few scale-free netwo
are known yet. The range of the values of degree, in wh
the power-law behavior can be observed, is usually too n
row for a precise measurement of the exponentg. Why are
so few scale-free networks observed? Why are the value
g for all of them only between 2 and 3?~Note that not any
network has to be resilient, e.g., neither nodes nor links
collaboration networks are removable by definition@21#.!
Here, we discuss these questions.

In previous papers, degree distributionsP(k,t) of scale-
free networks were calculated only in the ‘‘thermodynam
limit,’’ i.e., in the limit of the large system sizet, which also
plays the role of time, if one node is added at each increm
of time. In this case, the distribution is stationary, and is
the form P(k);k2g in all ranges of large enoughk, k@1.
Nevertheless, real networks are finite. The evolution
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P(k,t) to the stationary distribution turns to be nontrivia
Using a simple exactly solvable model, we demonstrate
low that, for finite networks, the power-law region of degr
distribution has the cutoff atkcut;tb, whereb51/(g21).
We show that the trace of the initial conditions, i.e., of t
initial configuration of the network—the hump atkh;kcut
;tb—may be observed atany size of the network. This
cutoff in degree distribution allows observation of th
power-law dependence only for very large networks. F
large values ofg, the power-law dependence is practica
unobservable.

Let us introduce the model of the scale-free growing n
work with undirected links ~see Fig. 1!. Initially ( t52),
there are three nodes,s50,1,2, each with degree 2.

~i! At each increment of time, a new node is added.
~ii ! It is connected to both ends of a randomly chosen l

by two undirected links.
As far as we know, it is the simplest model of a scale-fr

network. The preferential linking arises in it not because
some special rule including a function of degree as in@12#
but naturally. Indeed, in the model that we consider,
probability that a node has the randomly chosen link attac
to it is equal to the degreek of the node divided by the tota

FIG. 1. Illustration of the simplest model of scale-free growi
networks. In the initial configurationt52 three sites are presen
s50,1,2 (a). At each increment of time, a new node with two link
is added. These links are attached to the ends of a randomly ch
link of the network.
©2001 The American Physical Society01-1
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number of links, 2t21. Therefore, the evolution of the ne
work is described by the following master equation,

p~k,s,t11!5
k21

2t21
p~k21,s,t !1

2t212k

2t21
p~k,s,t !,

~1!

with the initial condition,p(k,s5$0,1,2%,t52)5dk,2 . Also,
p(k,t,t)5dk,2 . Here,p(k,s,t) is the probability that the site
0<s<t has k connections at timet. Note that this maste
equation and all the following ones are exact for allt>2.
Equation ~1! has the form similar to that of the Baraba´si-
Albert model@12#. Therefore, one may expect that the sc
ing exponents of these models have to coincide. One sh
emphasize that, here, unlike the Simon’s model, a numbe
nodes~one! added at each time step is fixed.

From Eq.~1!, we can obtain several useful exact relatio
for our model. In particular, from Eq.~1!, one may find the
equation for the average degree of an individual no
k̄(s,t)[(k52

t2s12kp(k,s,t):

k̄~s,t11!5
2t

2t21
k̄~s,t !, k̄~ t,t !52. ~2!

One can obtain easily its solution,

k̄~s,t !52t2s11
~ t21!!

~s21!!

~2s23!!!

~2t23!!!
>

s,t@1

2At

s
. ~3!

Here, s>2 and k̄(0,t)5 k̄(1,t)5 k̄(2,t). Hence, the scaling
exponentb, defined through the relation,k̄(s,t)}(s/t)2b,
equals 1/2 like for the Baraba´si-Albert model.

Also, one can find the average numberb̄(s,s8) of links
between the sitess and s8 for any s,s8<t, 0,b̄(s,s8)
<1. In fact, b̄(s,s8) is the average of the element of th
adjacency matrix@8# over all possible realizations of th
growth. The equation for this quantity is

b̄~s,s811!5
1

2t21 F (
u50

s21

b̄~u,s!1 (
u5s11

s8

b̄~s,u!G . ~4!

Its exact solution fors,s8 is of the form,

b̄~s,s8!52s82s
~s822!!

~s21!!

~2s23!!!

~2s823!!!
>

s,s8@1 1

Ass8
, ~5!

and b̄(0,s8)5b̄(1,s8)5b̄(2,s8)51. Expression~5! demon-
strates distribution of links in the network.

We found exactly the degree distribution of the olde
nodes,p(k,0,t)5p(k,1,t)5p(k,2,t),

p~k,2,t !5
~k21!

2t2k~ t2k!!

~2t2k22!!

~2t23!!!
>

t@k2
~k21!

2t
. ~6!

This relation turns to be useful for finding the total degr
distribution. Also, one may obtain the relation,p(2,s,t)
5(2s23)/(2t23). The scaling form ofp(k,s,t) for k,s,t
06210
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@1 andkAs/t fixed is obtained using theZ transform. The
scaling relation is of the form,

p~k,s,t !5As

t S kAs

t D expS 2kAs

t D . ~7!

This is a particular case of the corresponding scaling re
tions for the scale-free networks@17#.

The matter of interest is the total degree distributio
P(k,t)[(s50

t p(k,s,t)/(t11). The equation for it can be de
rived from Eq.~1!,

P~k,t !5
t

t11 F k21

2t23
P~k21,t21!

1S 12
k

2t23D P~k,t21!G1
1

t11
dk,2 ~8!

with the initial conditionP(k,2)5dk,2 .
The exact solution of Eq.~8! is

P~k,t !5
24

k~k11!~k12!

1

~ t11!~2t23!!!

~2t2k22!!

2t2k~ t2k!!

3H ~ t2k!F t1
~k22!~k11!

4 G
1

~k21!k~k11!~k12!

8 J . ~9!

One may check Eq.~9! inserting it directly into Eq.~8!. We
obtained Eq. ~9! using the distribution functionP̃(k,t)
[(s53

t p(k,s,t)/(t22), which looks less cumbersome tha
P(k,t) and may be found without great problems, and t
expression forp(k,2,t), Eq. ~6!.

From Eq.~8! with t→`, it follows the equation for the
stationary distributionP(k),

~k21!P~k21!2~k12!P~k!12dk,250, ~10!

where the solution is

P~k!5
12

k~k11!~k12!
. ~11!

Equation~11! is similar to the form of the stationary degre
distribution found for the Baraba´si-Albert model @17,18#.
One sees thatg53.

Our aim is to find how the stationary distribution
reached. From Eq.~9!, for t@k@1, one gets

P~k,t !5P~k!F11
1

4

k2

t
1

1

8 S k2

t D 2GexpH 2
1

4

k2

t J . ~12!

The factorP(k,t)/P(k)[g(k/At) depends only on the com
binationk/At. Therefore, the peculiarities of the distributio
induced by the size effects never disappear but only m
with increasing time in the direction of large degree. T
functiong(k/At) is close to 1 fork,At, has a hump atkmax
1-2
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betweenAt and 4At with a maximum atkmax/At5A6
52.449 . . . , g(kmax/At)57 e23/251.562 . . . , and thecut-
off at kcut;4At ~see Fig. 2!. Hence, the power-law behavio
is observable only in a rather narrow region, 1!k!At.

One may check that the form of the hump in Fig. 2 d
pends on the initial conditions. In our case, the evolut
starts from the configuration shown in Fig. 1~a!. If we start
the growth from another configuration, the form would
different.

We have demonstrated above the size-dependence o
gree distribution using the exactly solvable example. W
are the general reasons of such behavior of scale-free
works?

Measuring of degree distributions is always impeded
the strong fluctuations at largek. The reason for such fluc
tuations is the poor statistics in this region. One can ea
estimate the characteristic valuekf above which the fluctua
tions are strong. IfP(k);k2g, and g.2, then tkf

2g;1.
Therefore,kf;t1/g. One may improve the situation using th
cumulative distributions,Pcum(k)[*k

`dkP(k), instead of
P(k). Also, in simulations, one may make a lot of runs
increase the statistics. Nevertheless, one cannot pass th
off kcut that we discuss. One can estimate the cuto
tPcum(kcut);1, sokcut;t1/(g21). This cutoff is the real bar-
rier for the observation of the power-law dependence.

We have shown that the degree distribution of individu
sites is an exponentially decreasing function at largek @see
Eq. ~7!#. For the scale-free networks, it can be written in t
general scaling form @17#, p(k,s,t)5(s/t)b f @k(s/t)b#,
where f (x) is a scaling function, and the relation@16,17#
between the exponentsb andg is b(g21)51. In the par-
ticular case of the proposed model,f (x)5x exp(2x). The
exponentb also figures in the relation for the average d
gree, k̄(s,t)}(s/t)2b. It follows from the scaling form of
p(k,s,t) that the cutoff of the total distribution is determine
by the degree distribution of the individual nodes with t
smallest numbers, i.e., by the oldest ones. Therefor
kcut(1/t)b;const andkcut;tb5t1/(g21). For the considered
model,b51/2, see Eq.~7!. The degree distributions of th
oldest nodes~and their quantity! depend strongly on the ini
tial conditions. Hence, the part of the total degree distri

FIG. 2. Deviation of the degree distribution of the finite-si
network from the stationary one,P(k,t)/P(k,t→`), vs k/At. The
form of the hump depends on the initial configuration.
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tion near the cutoff depends strongly on this factor. T
power-law dependence of the distribution can be obser
only if it exists for at least 2 or 3 decades of the degree.
this, the networks have to be large,t.102.5(g21). But there
are only a few large networks in nature! For largeg, one
practically has no chances to find the scale-free behavio

In Fig. 3, in the log-linear scale, we present the sizes of
reported scale-free networks vs theirg exponent values. The
plotted points are inside of the region restricted by the lin
g52, log10 t;2.5(g21), and by the logarithm of the size o
the largest scale-free network in nature—the World W
Web—log10 t;9.

Our model demonstrates that the form of degree distri
tion is influenced by initial conditions even for large ne
works. Therefore, it is hard to obtain the values of the scal
exponents with high precision both from experimental d
and simulations. One should note that including the aging
nodes, breaking of links, or disappearing of nodes suppre
the effect of the initial conditions and removes the hump~see
the plots of the degree distributions in@16#!.

In conclusion, using a simple model, we have describ
the size effect on degree distribution of scale-free grow
networks. This cutoff and a trace of the initial conditions
hump near the cutoff, impede observations of the power-
dependence even for large but finite networks. For largeg,
such observations are impossible. Ifg→2, thenkcut;t, so,
in fact, the cutoff is absent.

FIG. 3. Log-linear plot of the size vs theg exponent value for
the networks reported as having power-law degree distributio
The line log10t;2.5(g21) is the finite-size boundary for the ob
servation of the power-law degree distributions. The dashed
g53 is the resilience boundary. This boundary is important
those growing networks that have to be stable to random bre
downs. The points: 1a and 1b are obtained for incoming and out
going links of the pages of the World Wide Web@4,7# ~also, g in

52.1 andgout52.45 were obtained from the complete map of t
nd.edu domain of the web, 325,729 nodes@12#, g in51.94 was ob-
tained for the domain level of the web in spring 1997@22#!, 2a is
for outgoing links for the inter-domain structure of the Internet a
2b is for outgoing links for the Internet at the router level@3#, 3a
and 3b are for citations of the ISI data base and Phys. Rev. D@1#
~also, estimations of Ref.@18# lead tog52.5 or, alternatively, even
to some possibility that these networks are not scale-free!, 4 is for
the collaboration network of MEDLINE@21#, 5 is for the collabo-
ration network of movie actors@20#, ~also,g52.3 was obtained for
this network in@6#! 6 is for incoming and outgoing links of the
networks of the metabolic reactions@23#. The precision of the uppe
points is about60.1 and is much worse for points in the dash
region.
1-3
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The proposed model belongs to the class of the exa
solvable scale-free growing networks. One can consider
other simple model. Instead of the connection of a new n
with the ends of a randomly chosen link of the network, o
may connect it each time with all three vertex nodes o
randomly chosen triangle of links.~Note that we forbid mul-
tiple links.! In other words, a new node connects with thr
random nearest neighbor nodes. Such a model has the
scaling exponents as the considered one.
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Note added.—After this paper had been submitted, a wo
@24# with analytical expressions for size-dependent distrib
tions of the Simon model was presented. Numerical calcu
tion of these distributions was made in Ref.@25#.
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tially supported by Project No. POCTI/FIS/33141/99. W
also thank A.-L. Baraba´si for providing us with the preprint
@23# before publication.
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